-12x^2+70x-28=0

Simple and best practice solution for -12x^2+70x-28=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -12x^2+70x-28=0 equation:


Simplifying
-12x2 + 70x + -28 = 0

Reorder the terms:
-28 + 70x + -12x2 = 0

Solving
-28 + 70x + -12x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '2'.
2(-14 + 35x + -6x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-14 + 35x + -6x2)' equal to zero and attempt to solve: Simplifying -14 + 35x + -6x2 = 0 Solving -14 + 35x + -6x2 = 0 Begin completing the square. Divide all terms by -6 the coefficient of the squared term: Divide each side by '-6'. 2.333333333 + -5.833333333x + x2 = 0 Move the constant term to the right: Add '-2.333333333' to each side of the equation. 2.333333333 + -5.833333333x + -2.333333333 + x2 = 0 + -2.333333333 Reorder the terms: 2.333333333 + -2.333333333 + -5.833333333x + x2 = 0 + -2.333333333 Combine like terms: 2.333333333 + -2.333333333 = 0.000000000 0.000000000 + -5.833333333x + x2 = 0 + -2.333333333 -5.833333333x + x2 = 0 + -2.333333333 Combine like terms: 0 + -2.333333333 = -2.333333333 -5.833333333x + x2 = -2.333333333 The x term is -5.833333333x. Take half its coefficient (-2.916666667). Square it (8.506944446) and add it to both sides. Add '8.506944446' to each side of the equation. -5.833333333x + 8.506944446 + x2 = -2.333333333 + 8.506944446 Reorder the terms: 8.506944446 + -5.833333333x + x2 = -2.333333333 + 8.506944446 Combine like terms: -2.333333333 + 8.506944446 = 6.173611113 8.506944446 + -5.833333333x + x2 = 6.173611113 Factor a perfect square on the left side: (x + -2.916666667)(x + -2.916666667) = 6.173611113 Calculate the square root of the right side: 2.484675253 Break this problem into two subproblems by setting (x + -2.916666667) equal to 2.484675253 and -2.484675253.

Subproblem 1

x + -2.916666667 = 2.484675253 Simplifying x + -2.916666667 = 2.484675253 Reorder the terms: -2.916666667 + x = 2.484675253 Solving -2.916666667 + x = 2.484675253 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2.916666667' to each side of the equation. -2.916666667 + 2.916666667 + x = 2.484675253 + 2.916666667 Combine like terms: -2.916666667 + 2.916666667 = 0.000000000 0.000000000 + x = 2.484675253 + 2.916666667 x = 2.484675253 + 2.916666667 Combine like terms: 2.484675253 + 2.916666667 = 5.40134192 x = 5.40134192 Simplifying x = 5.40134192

Subproblem 2

x + -2.916666667 = -2.484675253 Simplifying x + -2.916666667 = -2.484675253 Reorder the terms: -2.916666667 + x = -2.484675253 Solving -2.916666667 + x = -2.484675253 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2.916666667' to each side of the equation. -2.916666667 + 2.916666667 + x = -2.484675253 + 2.916666667 Combine like terms: -2.916666667 + 2.916666667 = 0.000000000 0.000000000 + x = -2.484675253 + 2.916666667 x = -2.484675253 + 2.916666667 Combine like terms: -2.484675253 + 2.916666667 = 0.431991414 x = 0.431991414 Simplifying x = 0.431991414

Solution

The solution to the problem is based on the solutions from the subproblems. x = {5.40134192, 0.431991414}

Solution

x = {5.40134192, 0.431991414}

See similar equations:

| 21=t+6 | | (2x^2+15x+29)/(x+4) | | x^8/x^-3 | | 12540=12000+(1)(R)(.5) | | x+14=48 | | 9a^2-121f^2=0 | | 4c=-12 | | x+5(1)=0 | | 12540=12000+(1)+R(.5) | | 4(k-6)-(-3k-9)=6k | | -1=6/7(4)+b | | 4y^2-81x^2=324 | | 5y+(3/7)=3/7 | | 9n-3(2n-n)=15 | | x/6+4+15 | | -2=-1/5(1)+b | | 3x-(5/6)=13/6 | | x+(x+12)+(x+24)=180 | | -2.4a+3.7=16.1+3.1a | | 7(-2)+2(0)=x | | x/8+4=15 | | 9x+4/5=4/5 | | 11n=77 | | x(x+15)+(x+18)=180 | | x+(x+19)+(x+32)=180 | | c^2+14c+49=0 | | -x^2+6x-3=y | | 8/4y-12=-4 | | t-1/9=-5/3 | | -1/3x+2/9x+5/6x | | .44x-1=.55x+2 | | 7(x+10)-11(x-11)= |

Equations solver categories